Category: blog

“GDR mécanique des matériaux et fluides biologiques”, December 11-13, Marseille

3d.FAB team will be present at “GDR mécabio & Réparer l’humain” with two talks on bioprinting for regenerative medicine and cells mortality prediction.

Event link:

JRS2019 : Journées Robotique Souple – Lille

3d.FAB participated to the SoftRobotics journey for presenting its 3d printing activities. Focus on the deposition of soft materials (silicones, hydrogels) using the LDM and FRESH methods and the possible applications with processing soft electronic devices.

New self-healing support medium for 3D printing of soft materials

SIn the medical field, 3D printing using material deposition present limitations on printing soft materials from fluids, like silicones. 3D printing in support medium (FRESH) overcome these limits with the holding of the printed material, without collapse, during its liquid-solid transition. The success of this technique relies on the rheological properties of the support medium, which needs to be tailored and understood, thus enabling its self-healing during the process while holding the printed shape.

                In this study, we developed a new approach which enables the tailoring of the static yield stress of the poloxamer 407 hydrogel used as a support medium for 3D printing thanks to the addition of poly(ethylene glycol) (PEG). In order to understand and determine the strengths of this self-healing support medium, rheological measurements and 3D printing were performed. Poloxamer hydrogels forms by micelles entanglement. Here, adding the PEG disturbs this entanglement by dehydration of the hydrophilic parts of the polymer due to the salting-out effect. This enables a precise control of the static yield stress of the hydrogel and an easier printing of fluid materials by material deposition.

                To demonstrate the strength of this technique, an anatomical shape, a mitral valve, was 3D printed from a fluid material. Furthermore, the understanding of structure-properties relations of the poloxamer 407 hydrogels allow us to extend this technique in the bioprinting field to answer the challenges of regenerative and personalized medicine.